A Series of Novel Ensemble Procedures with Tree Learners

Matt Corsetti Advisor: Dr. Tanzy Love

Department of Biostatistics and Computational Biology University of Rochester

August 18, 2021

Overview

Overview:

- Brief Overview of Ensemble Methods
 - Tree learners
 - Popular preexisting procedures
- Grafted and Vanishing Random Subspaces
- Bagged Feature Weighted Random Forests
- Questions and Answers

Classification and Regression Trees (CART)

Background:

- Proposed by Leo Breiman in 1984
- Problem: Simple linear regression models often perform poorly with complex real-world data
- Idea: Try fitting simple regression models to different partitions of the covariate space to achieve a better fit
- Solution: Partition up the covariate space using a binary classification tree and fit a model to each subspace

Growing a Regression Tree:

- The data consists of p inputs and a response for each of N observations, that is, (x_i, y_i) for i = 1, ..., N, with $x_i = (x_{i1}, ..., x_{ip})$
- The algorithm sequentially identifies a variable on which to make a split/partition as well as the respective split point/value
- CART partitions the covariate space into M distinct, non-overlapping regions R_1, \ldots, R_M and we model the response as a constant γ_m in each of the regions as follows:

$$T(x) = \sum_{m=1}^{M} \gamma_m I(x \in R_m)$$
 (1)

Classification and Regression Trees (CART)

Boston Housing Data Example:

Percent of population classified as "lower status"

Classification and Regression Trees (CART)

- The first split (#rooms < 6.941) partitions the space into R_1 and R_2
- The second split (%lower status) further divides up the R_2 subspace

• The solution that minimizes the sum of squared errors uses the average of the y_i in the region R_m as the estimates for the γ_m 's

$$\hat{\gamma}_m = \operatorname{ave}(y_i|x_i \in R_M)$$

How do we pick the splits?:

M. Corsetti

 Consider a split variable k and value at which to split it s and define the pair of half-planes

$$\min_{k,s} \left[\min_{\gamma_1} \sum_{x_i \in R_1(k,s)} (y_i - \gamma_1)^2 + \min_{\gamma_2} \sum_{x_i \in R_2(k,s)} (y_i - \gamma_2)^2 \right]$$
 (2)

- Inner minimization is solved by $\hat{\gamma}_1 = \text{ave}(y_i|x_i \in R_1(k,s))$ and $\hat{\gamma}_2 = \operatorname{ave}(y_i|x_i \in R_2(k,s))$
- The partition is made on the best available split (greedy) identified using equation 2, then the process is repeated

How/when do we stop?: Cost-Complexity Pruning

$$\sum_{m=1}^{|\mathcal{M}|} \sum_{x_i \in R_m} (y_i - \hat{\gamma}_m)^2 + \alpha |\mathcal{M}| \tag{3}$$

Ensemble Methods

- **Ensemble learning**: methods that join together "simple" models or "weak" learners to form a committee or ensemble
- Ensembles leverage the combined strength of their base models to achieve increased predictive performance greater than that of the individual learners
- Generally speaking, ensembles are made stronger when there is disagreement and very little correlation among the learners
- "Diversity and independence are important because the best collective decisions are the product of disagreement and contest, not consensus or compromise." -James Surowiecki, The Wisdom of Crowds

Bootstrap Aggregation (Bagging)

Bagging:

- Ensemble procedure that reduces variance in the estimate $\hat{f}(x)$ by averaging over predictions from individual trees (reduces variance and leaves bias unchanged)
- Bagging with trees:
 - Draw *B* bootstrapped samples from the data $Z = \{(x_1, y_1), \dots, (x_n, y_n)\}$
 - For each bootstrap sample Z_b , b = 1, ..., B, fit a tree $T(x; \theta_b)$ and obtain predictions, then average predictions across trees:

$$\hat{f}_{Bagged}(x) = \frac{1}{B} \sum_{b=1}^{B} T(x; \theta_b), \tag{4}$$

where θ_b characterizes the b^{th} tree (split variables, cut points, terminal node values)

Random Subspaces

Random Subspaces:

- Proposed by Tin Kam Ho in 1998, also known as "attribute bagging"
- Random subspaces with trees:
 - Draw B randomly chosen subsets of the predictor variables (referred to as "feature subsets") from the data, each of size r < p
 - For each feature subset $X^b_{\{n \times r\}}$ $b = 1, \ldots, B$ fit a tree $T(x; \theta_b)$ and obtain the predictions, then average predictions over trees:

$$\hat{f}_{RSM}(x) = \frac{1}{B} \sum_{b=1}^{B} T(x; \theta_b)$$
 (5)

 Building trees on different feature subsets can reduce correlation between trees making for a stronger ensemble

Random Forests

Random Forests:

- Proposed by Leo Breiman in 2001, average over trees
- Improves the variance reduction of bagging by reducing correlation among trees in the ensemble
- RF achieves this by randomly selecting mtry $\leq p$ of the input variables as split candidates before each split
- Reducing mtry will reduce the correlation between trees thereby reducing the variance in the average

$$\hat{f}_{\mathsf{RF}}(x) = \frac{1}{B} \sum_{b=1}^{B} T(x; \theta_b)$$
 (6)

Boosting

Boosting:

- Propsed by Robert Schapire in 1990, sum of trees ensemble
- Fit tree $T(x, \theta_b)$ to residuals from ensemble consisting of all trees that came before it (instead of y):

$$\hat{\theta_b} = \underset{\theta_b}{\operatorname{argmin}} \left[\sum_{i=1}^n L(y_i, f_{b-1}(x_i) + T(x_i, \theta_b)) \right], \tag{7}$$

- Fitting each tree to ensemble residuals allows ensemble to improve in areas where it performs poorly
- Boosted tree model is the sum over these trees

$$\hat{f}_{\mathsf{Boost}}(x) = \sum_{b=1}^{B} T(x; \theta_b)$$
 (8)

Boosting

Shrunken version of new tree is added to the ensemble

$$f_b(x) = f_{b-1}(x) + \omega T(x_i, \theta_b), \quad 0 \le \omega \le 1$$
 (9)

- Shrinkage prevents any one tree from being overly influential
- Shrinkage parameter ω controls rate at which boosting learns (smaller ω values with large forests sizes tend to work well)

Combining Ensemble Methods

 Much work has been done in combining data-partitioning methods with feature-partitioning methods and also with boosting

Overview

Overview:

- Ensemble Methods
 - Tree learners
 - Popular preexisting procedures
- Grafted and Vanishing Random Subspaces
- Bagged Feature Weighted Random Forests
- Questions and answers

Motivating Statement

Problem:

- Procedures that use random sampling of the input variables for split candidates (e.g. Random Forests, RSM) suffer when the # of truly informative features s is small relative to p
- Feature (input variable) subsets are likely to contain many non-informative features
- Learners built on these subsets can be harmful to ensemble

Solution:

 Allow each tree to share information regarding variable importance in its feature subset with the trees that come after it in the ensemble

Publication Status: In submission Pattern Analysis and Applications (3rd round review)

August 18, 2021

Grafting and Vanishing Random Subspaces

Grafting Random Subspaces (GRS):

- Grow tree on bootstrapped sample and randomly chosen feature subset of size r < p</p>
- Identify most important variable in feature subset and recycle it across next q subsets

Main Idea:

- Grafting allows new trees to reuse informative features
- New trees explore how informative features interact with each other and features not yet randomly sampled

Vanishing Random Subspaces (VRS):

- $\begin{tabular}{ll} \bullet & \textbf{Grow tree on bootstrapped sample and randomly chosen feature} \\ & \textbf{subset of size } r$
- Identify least important variable in feature subset
- Temporarily exile feature from next q subsets

Main Idea:

 Exiling uninformative features creates a narrower but more enriched pool of variable candidates

Grafting and Vanishing Random Subspaces

Estimators:

Both GRS and VRS take the average over trees as the estimator

$$\hat{f}_{GRS/VRS}(x) = \frac{1}{B} \sum_{b=1}^{B} T(x; \theta_b)$$
 (10)

 We also propose boosted versions of either algorithm (BoGRS and BoVRS) which are sum-of-shrunken-trees models

$$\hat{f}_{\text{BoGRS/BoVRS}} = \sum_{b=1}^{B} \omega T(x; \theta_b)$$
 (11)

Variable Importance

We consider three measures of variable importance:

- First split variable used to split root node
- Split frequency how often a variable is split on
- Contribution to explained deviance

Variable Importance

Contribution to explained deviance

• Each non-terminal node has an associated deviance

$$D_{v} = \sum_{x_{i} \in R_{v}} (y_{i} - \hat{\gamma}_{v})^{2}$$

where v = 1, ..., V indexes non-terminal nodes

The gain in explained deviance from splitting a node is defined as

$$\Delta = rac{D_{\mathsf{parent}} - \left(D_{\mathsf{left}\;\mathsf{child}} + D_{\mathsf{right}\;\mathsf{child}}
ight)}{D_{\mathsf{root}}}$$

 Contribution to explained deviance for variable j is the sum of the gains in explained deviance from non-terminal nodes that split on variable j

$$\mathsf{AggDev}_j = \sum_{v=1}^V \Delta_v I(\mathsf{node}\ v\ \mathsf{splits}\ \mathsf{on}\ \mathsf{variable}\ j)$$

Variable Importance

Optimal pairings:

- **1 VRS**: deviance + least important
- VRS with boosting: deviance + most important
- GRS: most commonly split + most important
- GRS with boosting: most commonly split + most important

Grafting/Vanishing Parameter q:

 q determines for how many successive feature subsets the variable is grafted or exiled

$$q_b \sim \max\{1, \mathsf{Pois}(\sqrt{p}/2)\}$$

- Draw q_b after constructing the b^{th} learner
- Future work:
 - We'd like to make q_b a function of both p and B (outside the scope of this paper)

Simulation Design

We follow the simulation design of Hastie et al. 2017

Simulation parameters:

- n = 100 (fixed number of observations)
- $m{p} = \{10, 100, 1000\}$ (number of predictor variables)
- $s = \{5, 50\}$ (sparsity level–number of truly informative variables)
- $\rho = \{0.30, 0.70\}$ (predictor autocorrelation level)
- $\nu = \{0.05, 0.42, 2.07\}$ (signal-to-noise level)
- 30 unique simulation settings

Simulation Design

Simulation data:

- **①** $\beta_0 = \text{vector of true coefficients (first s values are sequence from 10 to 0.5)$
- ② Predictor matrix $X \sim N_p(0, \Sigma)$ i.i.d. where Σ has entry (i, j) equal to $\rho^{|i-j|}$
- **3** Response vector $y \sim N_n(X\beta_0, \sigma^2 I)$, where σ^2 defined to meet desired SNR level, $\sigma^2 = \beta_0^T \Sigma \beta_0 / \nu$
- $\textbf{ 0} \ \, \text{Acquire each ensemble's prediction error on validation set } (\tilde{X}, \tilde{y})$
- Repeat these steps 1,000 times and average prediction error across repeats

Simulation Results

Simulation Results

р	s	ρ	ν	Best New Algorithm			Best Existing Algorithm			Paired T	Result
				Method	В	Mean	Method	В	Mean	P-value	Result
1000	5	0.3	0.05	BoVRS	10	6119.44	BoRSM	10	6123.16	0.201	W
1000	5	0.3	0.42	BoGRS	100	928.24	BoRSM	90	939.18	0.000	W
1000	5	0.3	2.07	BoGRS	100	255.50	GBoost	90	260.89	0.000	W
1000	5	0.7	0.05	BoVRS	10	10141.88	BoRSM	10	10145.83	0.441	W
1000	5	0.7	0.42	BoGRS	100	1426.37	BoRSM	100	1455.47	0.000	W
1000	5	0.7	2.07	BoGRS	90	341.69	GBoost	50	357.14	0.000	W
1000	50	0.3	0.05	BoVRS	10	67936.47	BoRSM	10	67969.53	0.321	W
1000	50	0.3	0.42	BoVRS	10	10901.81	BoRSM	10	10912.24	0.082	W
1000	50	0.3	2.07	GRS	100	4627.08	GBoost	90	4619.40	0.510	L
1000	50	0.7	0.05	BoVRS	10	194650.78	BoRSM	10	194666.26	0.876	W
1000	50	0.7	0.42	GRS	100	29952.41	RF	100	30061.13	0.001	W
1000	50	0.7	2.07	BoGRS	100	10282.63	GBoost	90	9459.75	0.000	L

Table: HTT Simulation Results with CART-Based Ensembles

• At least one of our new procedures outperformed all preexisting ensemble competitors in 17 of the 30 simulation settings (7 by a statistically significant margin)

Experimental Design

Experimental Design:

- 200 individual experiments carried out on each of 12 real datasets
- Training/test set split of 2/3:1/3 drawn at onset of each experiment
- Ensemble predictive performances recorded at B=10 to B=100 trees in increments of 10
- MSE averaged across 200 individual experiments for each dataset and compared using paired T-tests

Experimental Results:

 New CART-based procedures outperformed preexisting ensembles in 6 of the 12 datasets (4 by statistically significant margin)

Experimental Results - Iranian Housing

Figure: Iranian Housing Performance Results (n = 372, p = 103)

Experimental Results - Gait Speed

Figure: Gender Gait Speed Performance Results (n = 48, p = 321)

Summary of Findings

Summary:

- Grafting is better when there are few informative features
- Exiling tends to be better in situations with more informative features
- Boosted versions of GRS and VRS tended to outperform their non-boosted counterparts
- Grafting tends to be the more promising of the two
- Future work: combine grafting and vanishing into one algorithm

Overview

Overview:

- Ensemble Methods
 - Tree learners
 - Popular preexisting procedures
- Grafted and Vanishing Random Subspaces
- Bagged Feature Weighted Random Forests
- Questions and answers

Motivating Statement

Problem: (similar motivating problem as GRS/VRS)

- Random Forests suffers in settings where the number of truly informative features s is small relative to p
- When drawing feature subsets to split the nodes, many uninformative features will be randomly selected
- Sub-optimal solution: increase the mtry parameter to increase chance of including valuable predictors—increases computational burden

Solution:

- Use weighted random sampling instead of simple random sampling to draw feature subsets, with weights tilted in favor of informative features
- Establish weights in a pre-processing step before growing forest

Motivating Statement

Solution (continued):

- Using weighted random sampling to select the feature subsets for Random Forests is not a new idea:
 - Enriched Random Forests (Amaratunga et al., 2008)
 - Feature-Weighted Random Forests (Ye et al. 2008)
 - Iterative Random Forests (Basu et al., 2018)
- **New Idea**: use ensemble methods (specifically bagging) to establish better estimates of the feature weights in the pre-processing stage

Publication Status: In submission Machine Learning

Bagged Approach

Bagged Approach:

- 1 Draw Q bootstrapped samples from the training data
- ② For each bootstrapped sample Z_q , where $q=1,\ldots,Q$, apply the same feature-weighting algorithm (e.g. ReliefF) to the bootstrapped sample and extract the p-vector of feature weights denoted w_q
- Average over weight vectors to get ensemble estimate

$$\hat{w}(x,y) = \frac{1}{Q} \sum_{q=1}^{Q} w_q(x,y)$$
 (12)

One of the example of the example

ReliefF Feature Weights

ReliefF Algorithm (Kononenko et al., 1997):

- An extension of the original Relief algorithm (Kira and Rendell, 1992)
 capable of handling missing data and multi-class problems
- Key idea of all Relief-based algorithms: estimate a variable's importance according to how well their values distinguish among observations that are near each other
- The algorithm should estimate the ability of attributes to separate each pair of classes regardless of which two classes are closest to each other
- ReliefF searches for k near misses from each different class and averages their contributions for updating W, weighted with the prior probability of each class

Simulation Design

Simulation data:

- We use the simulation model of Mease and Wyner (2008)
- Probabilities of class membership for a binary response variable are generated using the model

$$P(y = 1|x) = a + (1 - 2a) \cdot I \left[\sum_{j=1}^{s} x_j > s/2 \right].$$
 (13)

- ullet Input features follow a multivariate uniform distribution, $X \sim U[0,1]^p$
- Constant a denotes the Bayes error rate such that $0 \le a \le 1/2$
 - Bayes error rate is the best possible error rate an estimator could achieve (oracle error rate)
- Draw $n_{\text{train}} = 300$ and $n_{\text{test}} = 500$, 200 separate times for each combination of $a = \{0.1, 0.2\}$, $p = \{5, 10, 25, 50, 100, 150\}$, and s = 2 and averaged the misclassification error rates

Simulation Results

Experimental Design

Experimental Design:

- 200 individual experiments carried out on 12 real datasets
- Training/testing split of 25%:75% drawn at onset of each experiment
- Average misclassification error rate trajectories recorded at ensemble sizes ranging from B=10 through B=200

Experimental Design

Dataset	n	р	Classes	% Largest Class	% Smallest Class
Boston Housing	506	13	9	26.09	3.36
Cardiotocography	2126	21	3	77.85	8.28
Cervical Cancer	668	28	2	93.26	6.74
Gait Gender	48	321	2	56.25	43.75
Gastro Lesions	152	699	3	52.63	19.74
HCC Survival	121	33	2	63.64	36.36
Heart Disease	297	13	2	53.87	46.13
Kidney Disease	242	19	2	50.41	49.59
PANCAN Gene	801	5000	5	37.45	9.73
Parkinson's Disease	195	22	2	75.38	24.62
Pole	5000	26	11	62.16	1.66
SCADI	70	206	4	41.43	14.29

Table: UCI data sets summary statistics

Experimental Results

Experimental Results

Experimental Results

Experimental Results:

- BRWRF was the best performer on 8 of the 12 datasets (7 by statistically significant amounts)
- Key performance pattern occurs in 7 of the 12 datasets
 - Traditional Random Forests outperforms ReliefF Weighted Random Forests
 - Bagged ReliefF Weighted Random Forests outperforms traditional Random Forests
 - Demonstrates the need for better methods to estimate feature weights

Acknowledgements

Dr. Tanzy Love

Dr. Sally Thurston

Dr. Andrew McDavid

Dr. Jiebo Luo

Additional Thanks:

- Dr. Edwin van Wijngaarden and the SCDS Team
- T32 Training Grant (T32ES007271)
- Dr. Michael McDermott, Dr. Derick Peterson and Karin Gasaway

References

- Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Boca Raton, FL: CRC Press.
- O Ho, T. K., (1995). Random Decision Forests. Proceedings of the 3rd International Conference on Document Analysis and Recognition, 278-282.
- Mastie, T., Tibshirani, R., & Friedman, J. H. (2004). The elements of statistical learning: Data mining, inference, and prediction: With 200 full-color illustrations. New York: Springer.
- Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2), 197-227.

Questions and Answers

Thank you